Edytujesz „Teoria stożka”

Z Nonsensopedii, polskiej encyklopedii humoru

Uwaga: Nie jesteś zalogowany. Jeśli wykonasz jakąkolwiek zmianę, Twój adres IP będzie widoczny publicznie. Jeśli zalogujesz się lub utworzysz konto, Twoje zmiany zostaną przypisane do konta, wraz z innymi korzyściami.

Ta edycja może zostać anulowana. Porównaj ukazane poniżej różnice między wersjami, a następnie zapisz zmiany.

Aktualna wersja Twój tekst
Linia 10: Linia 10:
Do zobrazowania dowodu, który został przedstawiony poniżej, został przeprowadzony [[pomiar]] cech parametrycznych (wymiarów) kieliszka (quasi-stożka) o równoległych do siebie płaszczyznach dolnej (dna) i górnej. W teorii posługujemy się ściętym stożkiem, a nie paraboloidą obrotową, aby ułatwić zrozumienie zagadnienia – wyniki dla obu tych figur przestrzennych są niemal jednakowe. (Tworząc matematyczny obraz kieliszka jako stożka unikamy wprowadzania bardziej skomplikowanych [[wzór matematyczny|wzorów]]).
Do zobrazowania dowodu, który został przedstawiony poniżej, został przeprowadzony [[pomiar]] cech parametrycznych (wymiarów) kieliszka (quasi-stożka) o równoległych do siebie płaszczyznach dolnej (dna) i górnej. W teorii posługujemy się ściętym stożkiem, a nie paraboloidą obrotową, aby ułatwić zrozumienie zagadnienia – wyniki dla obu tych figur przestrzennych są niemal jednakowe. (Tworząc matematyczny obraz kieliszka jako stożka unikamy wprowadzania bardziej skomplikowanych [[wzór matematyczny|wzorów]]).


* Wysokość: <math>H=(5.5\pm0.1) cm</math>
* Wysokość: <math>H=(5,5\pm0,1) cm</math>
* Promień podstawy dolnej: <math>r=(0.8\pm0.1) cm</math>
* Promień podstawy dolnej: <math>r=(0,8\pm0,1) cm</math>
* Promień podstawy górnej: <math>R=(1.9\pm0.1) cm</math>
* Promień podstawy górnej: <math>R=(1,9\pm0,1) cm</math>


Do dalszych obliczeń błąd [[miernik]]a (w tym wypadku [[linijka|linijki]]) nie będzie uwzględniany, gdyż zarówno ten błąd jak i odchyłka od wartości średniej pomiaru jest stosunkowo bardzo mała od spodziewanych wyników i nie wpływa na ostateczny wynik.
Do dalszych obliczeń błąd [[miernik]]a (w tym wypadku [[linijka|linijki]]) nie będzie uwzględniany, gdyż zarówno ten błąd jak i odchyłka od wartości średniej pomiaru jest stosunkowo bardzo mała od spodziewanych wyników i nie wpływa na ostateczny wynik.
Linia 34: Linia 34:
<math>0\leq\varphi\leq 2\pi</math>
<math>0\leq\varphi\leq 2\pi</math>


<math>0.8\leq\rho\leq 1.9</math>
<math>0,8\leq\rho\leq 1.9</math>


<math>5\rho\leq\varphi\leq 9.5</math>
<math>5\rho\leq\varphi\leq 9.5</math>
Linia 50: Linia 50:
<math>0\leq\varphi\leq 2\pi</math>
<math>0\leq\varphi\leq 2\pi</math>


<math>0\leq\rho\leq 0.8</math>
<math>0\leq\rho\leq 0,8</math>


<math>4\leq\varphi\leq 9.5</math>
<math>4\leq\varphi\leq 9,5</math>


Rozwiązanie całki:
Rozwiązanie całki:
Linia 69: Linia 69:
* <math>Vd<Vg</math>
* <math>Vd<Vg</math>


Pierwszy wniosek: Połówki nie są sobie równe, oraz wniosek drugi – kluczowy – połowa objętości jest zawarta na przedziale względem wysokości od jej połowy do całej wysokości <math>H</math>. Uwzględniając brak przyrządów pomiarowych (mierników) oraz błąd paralaksy ludzkiego oka udowodniliśmy tezę, iż nasza „połówka” jest zawarta na przedziale <<math>1/2H,H</math>> w naszym konkretnym badanym przypadku <math>\langle 6.75cm, 9.5cm \rangle</math>.
Pierwszy wniosek: Połówki nie są sobie równe, oraz wniosek drugi – kluczowy – połowa objętości jest zawarta na przedziale względem wysokości od jej połowy do całej wysokości <math>H</math>. Uwzględniając brak przyrządów pomiarowych (mierników) oraz błąd paralaksy ludzkiego oka udowodniliśmy tezę, iż nasza „połówka” jest zawarta na przedziale <<math>1/2H,H</math>> w naszym konkretnym badanym przypadku <math>\langle 6.75cm, 9,5cm \rangle</math>.


== Uwagi ==
== Uwagi ==
Cc-white.svg Wszystko, co napiszesz na Nonsensopedii, zgadzasz się udostępnić na licencji cc-by-sa-3.0 i poddać moderacji.
NIE UŻYWAJ BEZ POZWOLENIA MATERIAŁÓW OBJĘTYCH PRAWEM AUTORSKIM!
Anuluj Pomoc w edycji (otwiera się w nowym oknie)

Szablony użyte w tym artykule: