Edytujesz „Teoria stożka”
Z Nonsensopedii, polskiej encyklopedii humoru
Uwaga: Nie jesteś zalogowany. Jeśli wykonasz jakąkolwiek zmianę, Twój adres IP będzie widoczny publicznie. Jeśli zalogujesz się lub utworzysz konto, Twoje zmiany zostaną przypisane do konta, wraz z innymi korzyściami.
Ta edycja może zostać anulowana. Porównaj ukazane poniżej różnice między wersjami, a następnie zapisz zmiany.
Aktualna wersja | Twój tekst | ||
Linia 1: | Linia 1: | ||
{{strona kandydująca}} |
|||
⚫ | |||
[[ |
[[Grafika:3kielony2.jpg|thumb|right|200px|Kieliszki o budowie quasi-stożka]] |
||
'''Teoria stożka''' – matematyczny dowód na to, dlaczego tzw. „połówka” (kieliszka) połówką nie jest. |
'''Teoria stożka''' – matematyczny dowód na to, dlaczego tzw. „połówka” (kieliszka) połówką nie jest. |
||
== |
==Wstęp i założenia teoretyczne== |
||
Teoria stożka, zwana również alkoholową teorią stożka, jest pierwszym matematycznym dowodem na to, że tzw. połówka (słowo często używane w zwrocie: ''Nalej mi połówkę'') niekoniecznie połówką być musi. Zjawisko picia „połówek” występuje głównie u [[kobieta|kobiet]], rzadziej u |
Teoria stożka, zwana również alkoholową teorią stożka, jest pierwszym matematycznym dowodem na to, że tzw. połówka (słowo często używane w zwrocie: ''Nalej mi połówkę'') niekoniecznie połówką być musi. Zjawisko picia „połówek” występuje głównie u [[kobieta|kobiet]], rzadziej u mężczyzn – dzięki teorii stożka pełny po brzegi [[kieliszek]] też jest połówką. Wynika to z budowy owego naczynia które jest często [[paraboloida obrotowa|paraboloidą obrotową]] – czyli w połowie wysokości tejże przestrzennej figury jest mniej niż połowa objętości, jaką można w tej figurze umieścić. |
||
== |
==Pomiar szkliwa (kieliszka)== |
||
[[ |
[[Grafika:wykres2d22.jpg|thumb|200px|Rys. 1 – tworząca stożka w układzie 2d]] |
||
Do zobrazowania dowodu, który został przedstawiony poniżej, został przeprowadzony [[pomiar]] cech parametrycznych (wymiarów) kieliszka (quasi-stożka) o równoległych do siebie płaszczyznach dolnej (dna) i górnej. W teorii posługujemy się ściętym stożkiem, a nie paraboloidą obrotową, aby ułatwić zrozumienie zagadnienia – wyniki dla obu tych figur przestrzennych są niemal jednakowe. (Tworząc matematyczny obraz kieliszka jako stożka unikamy wprowadzania bardziej skomplikowanych [[wzór matematyczny|wzorów]]). |
Do zobrazowania dowodu, który został przedstawiony poniżej, został przeprowadzony [[pomiar]] cech parametrycznych (wymiarów) kieliszka (quasi-stożka) o równoległych do siebie płaszczyznach dolnej (dna) i górnej. W teorii posługujemy się ściętym stożkiem, a nie paraboloidą obrotową, aby ułatwić zrozumienie zagadnienia – wyniki dla obu tych figur przestrzennych są niemal jednakowe. (Tworząc matematyczny obraz kieliszka jako stożka unikamy wprowadzania bardziej skomplikowanych [[wzór matematyczny|wzorów]]). |
||
* Wysokość: <math>H=(5 |
* Wysokość: <math>H=(5,5±0,1) cm</math> |
||
* Promień podstawy dolnej: <math>r=(0 |
* Promień podstawy dolnej: <math>r=(0,8±0,1) cm</math> |
||
* Promień podstawy górnej: <math>R=(1 |
* Promień podstawy górnej: <math>R=(1,9±0,1) cm</math> |
||
Do dalszych obliczeń błąd [[miernik]] |
Do dalszych obliczeń błąd [[miernik|miernika]] (w tym wypadku [[linijka|linijki]]) nie będzie uwzględniany, gdyż zarówno ten błąd jak i odchyłka od wartości średniej pomiaru jest stosunkowo bardzo mała od spodziewanych wyników i nie wpływa na ostateczny wynik. |
||
Zmierzone wartości przenosimy na dwuwymiarowy [[układ współrzędnych]]. Ważne jest, aby rysunek był zrobiony czytelnie i możliwie jak najdokładniej (Rys. |
Zmierzone wartości przenosimy na dwuwymiarowy [[układ współrzędnych]]. Ważne jest, aby rysunek był zrobiony czytelnie i możliwie jak najdokładniej. (Rys.1). Otrzymując równanie tworzącej stożka <math>y=5x-4</math>. Jako, że współczynnik <math>a</math> jest wartością funkcji tangens kąta między osią <math>x</math>, a tworzącą, otrzymujemy kąt nachylenia tworzącej 78 stopni. |
||
Do dowodu przyjmujemy wysokość 9,5 cm gdzie: |
Do dowodu przyjmujemy wysokość 9,5 cm gdzie: |
||
* <math> |
* <math><0cm, 4cm)</math> – nierzeczywiste przedłużenie stożka tzw. nóżka |
||
* <math> |
* <math><4cm, 9,5cm></math> – stożek właściwy (mierzalny) tzw. komora wódkowa lub komora szczęścia |
||
== |
==Dowód założeń teoretycznych== |
||
[[ |
[[Grafika:stozek3d2.jpg|thumb|right|200px|Rys 2. – quasi-stożek; granice całkowania]] |
||
[[ |
[[Grafika:granice3d2.jpg|thumb|right|200px|Rys 3. – granice całkowania]] |
||
[[ |
[[Grafika:granice2a3d2.jpg|thumb|right|200px|Rys 4. – granice całkowania]] |
||
W dowodzie właściwym udowodnimy – groteskowo stwierdzając – że „połówka” występuje w każdym miejscu. gdzie osoba rozlewająca zachce tę „połówkę” mieć. A ściślej rzecz biorąc, formułujemy tezę: ''Połowa kieliszka mieści się miedzy jego połową wysokości a całą wysokością.'' |
W dowodzie właściwym udowodnimy – groteskowo stwierdzając – że „połówka” występuje w każdym miejscu. gdzie osoba rozlewająca zachce tę „połówkę” mieć. A ściślej rzecz biorąc, formułujemy tezę: ''Połowa kieliszka mieści się miedzy jego połową wysokości a całą wysokością.'' |
||
Linia 34: | Linia 34: | ||
<math>0\leq\varphi\leq 2\pi</math> |
<math>0\leq\varphi\leq 2\pi</math> |
||
<math>0 |
<math>0,8\leq\rho\leq 1,9</math> |
||
<math>5\rho\leq\varphi\leq 9 |
<math>5\rho\leq\varphi\leq 9,5</math> |
||
Rozwiązanie całki: |
Rozwiązanie całki: |
||
Linia 44: | Linia 44: | ||
<math>\int\limits^{2\pi}_0 d\varphi \int\limits^{1.9}_{0.8} [\varphi h]_{5\rho}^{9.5} d\rho = \int\limits^{2\pi}_0 d\varphi \int\limits^{1.9}_{0.8} ({9.5\rho}-{5\rho^2}) d\rho=</math> |
<math>\int\limits^{2\pi}_0 d\varphi \int\limits^{1.9}_{0.8} [\varphi h]_{5\rho}^{9.5} d\rho = \int\limits^{2\pi}_0 d\varphi \int\limits^{1.9}_{0.8} ({9.5\rho}-{5\rho^2}) d\rho=</math> |
||
<math>= 2\pi |
<math>= 2\pi[({{9.5*1.9^2} \over 2}-{{5*1.9^3} \over 3})-({{9.5*0.8^2} \over 2}-{{5*0.8^3} \over 3})]=22.2</math> |
||
Zamiana na zmienne walcowe po obszarze <math>A</math>: |
Zamiana na zmienne walcowe po obszarze <math>A</math>: |
||
Linia 50: | Linia 50: | ||
<math>0\leq\varphi\leq 2\pi</math> |
<math>0\leq\varphi\leq 2\pi</math> |
||
<math>0\leq\rho\leq 0 |
<math>0\leq\rho\leq 0,8</math> |
||
<math>4\leq\varphi\leq 9 |
<math>4\leq\varphi\leq 9,5</math> |
||
Rozwiązanie całki: |
Rozwiązanie całki: |
||
Linia 58: | Linia 58: | ||
<math>V2=\int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0}d\rho \int\limits^{9.5}_{4} \rho dh</math> |
<math>V2=\int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0}d\rho \int\limits^{9.5}_{4} \rho dh</math> |
||
<math>\int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0} [\varphi h]_{4}^{9.5} d\rho = \int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0} ({9.5\rho}-{4\rho}) d\rho = 2\pi |
<math>\int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0} [\varphi h]_{4}^{9.5} d\rho = \int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0} ({9.5\rho}-{4\rho}) d\rho = 2\pi[{{5.5\rho^2} \over 2}]_0^{0.8}=11.1</math> |
||
Sumaryczna objętość <math>V</math> mierzonego quasi-stożka (kieliszka) wynosi: |
Sumaryczna objętość <math>V</math> mierzonego quasi-stożka (kieliszka) wynosi: |
||
Linia 69: | Linia 69: | ||
* <math>Vd<Vg</math> |
* <math>Vd<Vg</math> |
||
Pierwszy wniosek: Połówki nie są sobie równe, oraz wniosek drugi – kluczowy – połowa objętości jest zawarta na przedziale względem wysokości od jej połowy do całej wysokości <math>H</math>. Uwzględniając brak przyrządów pomiarowych (mierników) oraz błąd paralaksy ludzkiego oka udowodniliśmy tezę, iż nasza „połówka” jest zawarta na przedziale |
Pierwszy wniosek: Połówki nie są sobie równe, oraz wniosek drugi – kluczowy – połowa objętości jest zawarta na przedziale względem wysokości od jej połowy do całej wysokości <math>H</math>. Uwzględniając brak przyrządów pomiarowych (mierników) oraz błąd paralaksy ludzkiego oka udowodniliśmy tezę, iż nasza „połówka” jest zawarta na przedziale <math><1/2H,H></math> w naszym konkretnym badanym przypadku <math><6.75cm, 9,5cm></math>. |
||
== |
==Uwagi== |
||
Dysponując aparatem matematycznym, a konkretnie rachunkiem całkowym, udowodniliśmy słuszność i prawdziwość tezy. Przedstawiona teoria dla samej matematyki i nauk pokrewnych nie jest ważna i istotna, lecz ma duże znaczenie społeczne. Bardzo dobrze sprawdza się tam, gdzie w określonej przestrzeni i w określonym czasie znajduje się wiele osób w celu [[libacja |
Dysponując aparatem matematycznym, a konkretnie rachunkiem całkowym, udowodniliśmy słuszność i prawdziwość tezy. Przedstawiona teoria dla samej matematyki i nauk pokrewnych nie jest ważna i istotna, lecz ma duże znaczenie społeczne. Bardzo dobrze sprawdza się tam, gdzie w określonej przestrzeni i w określonym czasie znajduje się wiele osób w celu [[libacja|zamierzonej konsumpcji]]. Należy brać pod uwagę, że teoria jest prawdziwa dla kieliszków w kształcie paraboloidy obrotowej lub stożka (kieliszki o tworzącej nachylonej pod kątem 0-30 stopni względem osi symetrii najlepiej nadają się do spożywania płynów). Dla kieliszków typowo cylindrycznych traci sens. |
||
{{Fizyka}} |
|||
{{Matematyka}} |
|||
[[Kategoria:Fizyka]] |
[[Kategoria:Fizyka]] |
||
[[Kategoria:Geometria]] |
|||
⚫ |