Liczba zespolona: Różnice pomiędzy wersjami
M (→Historia) |
|||
Linia 3: | Linia 3: | ||
=== Historia === |
=== Historia === |
||
Liczby zespolone wyznaczone zostały po raz pierwszy przez [[Pitagoras]]a, gdzie <math>\sqrt{-1}</math> miało oznaczać długość pola kwadratu o boku -1. Pitagoras wynalazł ją, gdyż właśnie taki obszar przegrał w karty z kumplem |
Liczby zespolone wyznaczone zostały po raz pierwszy przez [[Pitagoras]]a, gdzie <math>\sqrt{-1}</math> miało oznaczać długość pola kwadratu o boku -1. Pitagoras wynalazł ją, gdyż właśnie taki obszar przegrał w karty z kumplem [[Sofokles]]em i musiał jakoś to wytłumaczyć żonie. Źródła nic nie mówią o tym, na ile wymówka ta była skuteczna. |
||
Przez wiele lat nie robiono z nimi nic ciekawego, a jedynie liczono. Dopiero w [[XIX wiek]]u [[student|studenci]] z [[Francja|Francji]] postanowili zorganizować małą [[impreza|imprezę]] pod pretekstem nierównej walki z liczbami zespolonymi. Domagali się ich usunięcia, uznając |
Przez wiele lat nie robiono z nimi nic ciekawego, a jedynie liczono. Dopiero w [[XIX wiek]]u [[student|studenci]] z [[Francja|Francji]] postanowili zorganizować małą [[impreza|imprezę]] pod pretekstem nierównej walki z liczbami zespolonymi. Domagali się ich usunięcia, uznając że są one ''w ogóle nie są przydatne'' i ''tak naprawdę nie istnieją''. Niestety ku udręce przyszłych [[matematyk|matematyków]] protest przegrali. |
||
[[Kategoria:Matematyka]] |
[[Kategoria:Matematyka]] |
Wersja z 17:09, 4 kwi 2006
Liczba zespolona - w matematyce liczba postaci a+bi, inaczej ABI. Czasem, dla zmylenia przeciwnika zapisywana jako (d, b) gdzie d (odwrócone "b") = a z wcześniejszego wzoru. Założyć przy tym trzeba, że , co oczywiście nie ma sensu na zdrowy rozsądek. Dlatego też i nazywana jest jednostką urojoną.
Historia
Liczby zespolone wyznaczone zostały po raz pierwszy przez Pitagorasa, gdzie miało oznaczać długość pola kwadratu o boku -1. Pitagoras wynalazł ją, gdyż właśnie taki obszar przegrał w karty z kumplem Sofoklesem i musiał jakoś to wytłumaczyć żonie. Źródła nic nie mówią o tym, na ile wymówka ta była skuteczna.
Przez wiele lat nie robiono z nimi nic ciekawego, a jedynie liczono. Dopiero w XIX wieku studenci z Francji postanowili zorganizować małą imprezę pod pretekstem nierównej walki z liczbami zespolonymi. Domagali się ich usunięcia, uznając że są one w ogóle nie są przydatne i tak naprawdę nie istnieją. Niestety ku udręce przyszłych matematyków protest przegrali.