Twierdzenie Jodłowskiego: Różnice pomiędzy wersjami

Z Nonsensopedii, polskiej encyklopedii humoru
M (Przywrócono przedostatnią wersję, jej autor to Beatrycze Budyń. Autor wycofanej wersji to 89.72.156.210.)
Linia 7: Linia 7:
''[[Przedmiot]] dowolnowymiarowy obrócony na jednej płaszczyźnie, wokół dowolnego punktu, 360 razy po jeden stopień, będzie najprawdopobniej przystający do przedmiotu sprzed przemieszczenia.''
''[[Przedmiot]] dowolnowymiarowy obrócony na jednej płaszczyźnie, wokół dowolnego punktu, 360 razy po jeden stopień, będzie najprawdopobniej przystający do przedmiotu sprzed przemieszczenia.''


'''Twierdzenie Jodłowskiego poszerzone przez Michała Nowotnika poszerzone przez Mariannę Chlebowską:'''
'''Twierdzenie Jodłowskiego poszerzone przez Michała Nowotnika poszerzone ponownie:'''


''Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie 360 razy o pewną całkowitą ilość stopni będzie miał najprawdopodobniej takie same wymiary jak przedmiot sprzed przemieszczenia.''
''Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie 360 razy o pewną całkowitą ilość stopni będzie miał najprawdopodobniej takie same wymiary jak przedmiot sprzed przemieszczenia.''

Wersja z 17:53, 23 maj 2014

Twierdzenie Jodłowskiego – twierdzenie matematyczne opublikowane w 2006 r. w Wikipedii, lecz zostało szybko usunięte, więc zostało umieszczone w Nonsensopedii. Jest to twierdzenie matematyczne, z działu geometrii. Brzmi następująco:

Każda figura geometryczna obrócona o kąt 360 stopni wokół dowolnego punktu, będzie pokrywała się z jej początkowym położeniem. Twierdzenie zapoczątkowało nową erę całkiem idiotycznych, oczywistych twierdzeń matematycznych.

Twierdzenie Jodłowskiego poszerzone przez Michała Nowotnika:

Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie, wokół dowolnego punktu, 360 razy po jeden stopień, będzie najprawdopobniej przystający do przedmiotu sprzed przemieszczenia.

Twierdzenie Jodłowskiego poszerzone przez Michała Nowotnika poszerzone ponownie:

Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie 360 razy o pewną całkowitą ilość stopni będzie miał najprawdopodobniej takie same wymiary jak przedmiot sprzed przemieszczenia.

Twierdzenia Jodłowskiego o przemienności odejmowania są kolejnymi twierdzeniami słynnego Jodłowskiego.

Są całkowicie innowacyjne i dołączają do przemienności mnożenia i dodawania.

Zobacz też