Twierdzenie Jodłowskiego: Różnice pomiędzy wersjami

Z Nonsensopedii, polskiej encyklopedii humoru
M (linki + interlinie)
M (zobacz też)
Linia 10: Linia 10:


''Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie 360 razy o pewną ilość stopni będzie miał najprawdopodobniej takie same wymiary jak przedmiot sprzed przemieszczenia.''
''Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie 360 razy o pewną ilość stopni będzie miał najprawdopodobniej takie same wymiary jak przedmiot sprzed przemieszczenia.''

===Zobacz też===
* [[Twierdzenia Jodłowskiego o przemienność odejmowania]]


[[Kategoria:Właściwości matematyczne]][[Kategoria:Geometria]]
[[Kategoria:Właściwości matematyczne]][[Kategoria:Geometria]]

Wersja z 20:55, 18 paź 2006

Twierdzenie Jodłowskiego zostało pierwszy raz opublikowane w 2006 r. w Wikipedii, lecz zostało szybko usunięte, więc zostało umieszczone w Nonsensopedii. Jest to twierdzenie matematyczne, z działu geometrii. Brzmi następująco:

Każda figura geometryczna obrócona o kąt 360 stopni wokół dowolnego punktu, będzie pokrywała się z jej początkowym położeniem. Twierdzenie zapoczątkowało nową erę całkiem idiotycznych, oczywistych twierdzeń matematycznych.

Twierdzenie Jodłowskiego poszerzone przez Michała Nowotnika:

Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie, wokół dowolnego punktu, 360 razy po jeden stopień, będzie najprawdopobniej przystający do przedmiotu sprzed przemieszczenia.

Twierdzenie Jodłowskiego poszerzone przez Michała Nowotnika poszerzone przez Mariannę Chlebowską:

Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie 360 razy o pewną ilość stopni będzie miał najprawdopodobniej takie same wymiary jak przedmiot sprzed przemieszczenia.

Zobacz też