Nieskończoność: Różnice pomiędzy wersjami
M |
M (Przywrócono przedostatnią wersję, jej autor to 79.184.115.199. Autor wycofanej wersji to Wolfgang Amadeusz Rasiak.) |
||
Linia 12: | Linia 12: | ||
Jednakowoż gdyby przedstawić oś zbioru R za pomocą okręgu można przyjąć że jest to zbiór punktów równoodległych od zera, a zatem każda liczba jest jednocześnie większa i mniejsza od zera. |
Jednakowoż gdyby przedstawić oś zbioru R za pomocą okręgu można przyjąć że jest to zbiór punktów równoodległych od zera, a zatem każda liczba jest jednocześnie większa i mniejsza od zera. |
||
Jedyną osobą która policzyła do nieskończoności był legendarny [[Chuck Norris]] |
|||
== Zobacz też == |
== Zobacz też == |
Wersja z 20:16, 7 sie 2008
Jedna z teorii powstania nieskończoności mówi o przesądnych matematykach, którzy napadli i potłukli ósemkę ponieważ, jakoby miała być mniej szczęśliwa od siódemki. Toteż w niektórych kręgach uważa się, że ósemka jest już skończona.
Według niedawno powstałej teorii M&C nieskończoność równa jest 0.
Udowodnić to można bardzo prosto za pomocą całkowania. Jak wiemy całka i odwrotność całki (całka obrócona o 180 stopni) złączone ze sobą dają uniwersalny symbol nieskończoności. Po wyciągnięciu całki przed nawias wychodzi nam całka * (1-1), co daje 0.
Powstała teoria obala podstawowe zasady współczesnej matematyki.
Zbiór R jest bowiem zbiorem obustronnie niedomkniętym od -nieskończoności do +nieskończoności. Przy założeniu że nieskończoność to 0, zbiór R jest zbiorem od -0 do +0, czyli zbiorem jednoelementowym zawierającym liczbę 0.
Jednakowoż gdyby przedstawić oś zbioru R za pomocą okręgu można przyjąć że jest to zbiór punktów równoodległych od zera, a zatem każda liczba jest jednocześnie większa i mniejsza od zera.