Paradoks Banacha-Tarskiego: Różnice pomiędzy wersjami

Z Nonsensopedii, polskiej encyklopedii humoru
M (Poprawki same się robią…)
Linia 1: Linia 1:
[[Plik:Blue ball.png|thumb|Widzisz tę kulę? Matematyk widzi dwie]]
[[Plik:Blue ball.png|thumb|Widzisz tę kulę? Matematyk widzi dwie]]
'''Paradoks Banacha-Tarskiego''' – twierdzenie matematyczne mówiące o tym, że jedną kulę można rozbić na 5 części, z których, za pomocą samych obrotów i przesunięć, można złożyć dwie identyczne kule. Polski wkład w obalenie podstawowych zasad [[Matematyka|matematyki]].
'''Paradoks Banacha-Tarskiego''' – twierdzenie matematyczne mówiące o tym, że jedną kulę można rozbić na 5 części, z których, za pomocą samych obrotów i przesunięć, można złożyć dwie identyczne kule. Polski wkład w obalenie podstawowych zasad [[Matematyka|matematyki]].


== Co? ==
== Co? ==
Jeszcze raz: z jednej kuli można złożyć dwie, dokładnie takie same. Jest to prawdziwe twierdzenie w matematyce. Pierwsze zetknięcie się z paradoksem zwykle wywołuje wstrząs u ludzi, którzy myśleli, że matematyka jest zrozumiała, brak reakcji zaś obserwuje się głównie u [[Student|tych, dla których przestała być, i to już dawno]]. Początkowy etap wstrząsu to wyparcie. Czytelnik jest sceptyczny wobec paradoksu i ma szereg zastrzeżeń w stylu: ''Ale te kule nie są na pewno puste w środku? Przecież nie da się tak zrobić, tu musi być gdzieś jakiś haczyk.'' I tak dalej. Tymczasem żadnego haczyka nie ma. Masz jedną kulę, dzielisz ją na części, przesuwasz je, obracasz i masz dwie identyczne. Proste jak życiorys pana Mietka spod monopolowego.
Jeszcze raz: z jednej kuli można złożyć dwie, dokładnie takie same. Jest to prawdziwe twierdzenie w matematyce. Pierwsze zetknięcie się z paradoksem zwykle wywołuje wstrząs u ludzi, którzy myśleli, że matematyka jest zrozumiała, brak reakcji zaś obserwuje się głównie u [[Student|tych, dla których przestała być, i to już dawno]]. Początkowy etap wstrząsu to wyparcie. Czytelnik jest sceptyczny wobec paradoksu i ma szereg zastrzeżeń w stylu: ''Ale te kule nie są na pewno puste w środku? Przecież nie da się tak zrobić, tu musi być gdzieś jakiś haczyk.'' I tak dalej. Tymczasem żadnego haczyka nie ma. Masz jedną kulę, dzielisz ją na części, przesuwasz je, obracasz i masz dwie identyczne. Proste jak życiorys pana Mietka spod monopolowego.


Jedną z potocznych, żartobliwych interpretacji paradoksu jest sformułowanie: ''z ziarnka grochu można zrobić słońce''. Trzeba wyjaśnić, że jest to oczywista nieprawda. Na budowę obiektu tej wielkości trzeba mieć zgodę urzędnika w randze co najmniej starosty powiatowego, a prawdopodobieństwo, że ten jej udzieli, jest zerowe. Gdyby było inaczej, już mielibyśmy masę brzydkich, zielonych słońc, które by powstawały dzięki zastosowaniu twierdzenia.
Jedną z potocznych, żartobliwych interpretacji paradoksu jest sformułowanie: ''z ziarnka grochu można zrobić słońce''. Trzeba wyjaśnić, że jest to oczywista nieprawda. Na budowę obiektu tej wielkości trzeba mieć zgodę urzędnika w randze co najmniej starosty powiatowego, a prawdopodobieństwo, że ten jej udzieli, jest zerowe. Gdyby było inaczej, już mielibyśmy masę brzydkich, zielonych słońc, które by powstawały dzięki zastosowaniu twierdzenia.


== Wnioski ==
== Wnioski ==
Oznaczmy przez ''V'' objętość dowolnej kuli. Wiadomo, że objętość zostaje zachowana przez obroty i przesunięcia. To oczywiste, zatem na mocy paradoksu Banacha-Tarskiego ''V=2V''. Dzieląc przez ''V'' dostajemy ''1=2'', po odjęciu jedynki od obu stron ''0=1''. Mnożąc tę równość przez cokolwiek, otrzymujemy wniosek, że wszystkie liczby są równe. W ten sposób podaliśmy alternatywny dowód [[Twierdzenie o równouprawnieniu|twierdzenia o równouprawnieniu]].
Oznaczmy przez ''V'' objętość dowolnej kuli. Wiadomo, że objętość zostaje zachowana przez obroty i przesunięcia. To oczywiste, zatem na mocy paradoksu Banacha-Tarskiego ''V=2V''. Dzieląc przez ''V'' dostajemy ''1=2'', po odjęciu jedynki od obu stron ''0=1''. Mnożąc tę równość przez cokolwiek, otrzymujemy wniosek, że wszystkie liczby są równe. W ten sposób podaliśmy alternatywny dowód [[Twierdzenie o równouprawnieniu|twierdzenia o równouprawnieniu]].


== Zastosowania ==
== Zastosowania ==
W [[1973]] paradoks Banacha-Tarskiego został zastosowany przez tow. [[Edward Gierek|Gierka]] do podwojenia krajowej produkcji kul armatnich.
W [[1973]] paradoks Banacha-Tarskiego został zastosowany przez tow. [[Edward Gierek|Gierka]] do podwojenia krajowej produkcji kul armatnich.


== Zobacz też ==
== Zobacz też ==

Wersja z 21:57, 13 sie 2023

Widzisz tę kulę? Matematyk widzi dwie

Paradoks Banacha-Tarskiego – twierdzenie matematyczne mówiące o tym, że jedną kulę można rozbić na 5 części, z których, za pomocą samych obrotów i przesunięć, można złożyć dwie identyczne kule. Polski wkład w obalenie podstawowych zasad matematyki.

Co?

Jeszcze raz: z jednej kuli można złożyć dwie, dokładnie takie same. Jest to prawdziwe twierdzenie w matematyce. Pierwsze zetknięcie się z paradoksem zwykle wywołuje wstrząs u ludzi, którzy myśleli, że matematyka jest zrozumiała, brak reakcji zaś obserwuje się głównie u tych, dla których przestała być, i to już dawno. Początkowy etap wstrząsu to wyparcie. Czytelnik jest sceptyczny wobec paradoksu i ma szereg zastrzeżeń w stylu: Ale te kule nie są na pewno puste w środku? Przecież nie da się tak zrobić, tu musi być gdzieś jakiś haczyk. I tak dalej. Tymczasem żadnego haczyka nie ma. Masz jedną kulę, dzielisz ją na części, przesuwasz je, obracasz i masz dwie identyczne. Proste jak życiorys pana Mietka spod monopolowego.

Jedną z potocznych, żartobliwych interpretacji paradoksu jest sformułowanie: z ziarnka grochu można zrobić słońce. Trzeba wyjaśnić, że jest to oczywista nieprawda. Na budowę obiektu tej wielkości trzeba mieć zgodę urzędnika w randze co najmniej starosty powiatowego, a prawdopodobieństwo, że ten jej udzieli, jest zerowe. Gdyby było inaczej, już mielibyśmy masę brzydkich, zielonych słońc, które by powstawały dzięki zastosowaniu twierdzenia.

Wnioski

Oznaczmy przez V objętość dowolnej kuli. Wiadomo, że objętość zostaje zachowana przez obroty i przesunięcia. To oczywiste, zatem na mocy paradoksu Banacha-Tarskiego V=2V. Dzieląc przez V dostajemy 1=2, po odjęciu jedynki od obu stron 0=1. Mnożąc tę równość przez cokolwiek, otrzymujemy wniosek, że wszystkie liczby są równe. W ten sposób podaliśmy alternatywny dowód twierdzenia o równouprawnieniu.

Zastosowania

W 1973 paradoks Banacha-Tarskiego został zastosowany przez tow. Gierka do podwojenia krajowej produkcji kul armatnich.

Zobacz też