Twierdzenie matematyczne

Z Nonsensopedii, polskiej encyklopedii humoru
To jest najnowsza wersja artykułu edytowana „00:11, 16 wrz 2022” przez „Grzeeesiek (dyskusja • edycje)”.
(różn.) ← przejdź do poprzedniej wersji • przejdź do aktualnej wersji (różn.) • przejdź do następnej wersji → (różn.)

Twierdzenie matematycznebełkot pseudonaukowy osadzony w świecie matematyki, tzw. „królowej nauk bezużytecznych”. Zdanie składające się w 60% procentach ze słów absolutnie niezrozumiałych i nieznanych dla zwykłych ludzi, w 35% z dziwnych znaczków, których próżny trud szukać na klawiaturze oraz w 5% z zaimków.

Cele tworzenia twierdzeń matematycznych

  • Pobieranie grantów naukowych.
  • Budowanie podstaw dla tworzenia bardziej zaawansowanych twierdzeń, tak by koledzy z wydziału też mogli pobierać granty.
  • Uwalanie studentów.
  • Pisanie nikomu niepotrzebnych prac naukowych.
  • Organizowanie konferencji naukowych, których jedynym prawdziwym celem jest uczestniczenie wygłaszających prelekcje w bankietach ze szwedzkim stołem i darmową wódą.

Przykład twierdzenia matematycznego

Niech n będzie potęgą liczby rzeczywistej b, takiej, że , a f niech będzie bijekcją na zbiór półpełny liczb zespolonych odwrotnie przekształconych. Jeśli dla pewnej dodatniej liczby całkowitej i funkcja T jest zdefiniowana następująco:

to

Nic z tego nie rozumiesz? Spokojnie, zobacz jak wygląda dowód prawdziwości tego ustrojstwa:

Dowód

Korzystając z oszacowania z lematu Pitagorasa dla sumy interpolowanych wielomianów sacharozy pokażemy, że dla kolejnych przypadków zachodzi:

  • , ponieważ

Oczywistym i jakże widocznym jest fakt, że dla dowolnych n (nie będących potęga b) wartość argumentu może oznaczać lub .

Odpowiednio górne i dolne oszacowanie dla funkcji

(1)

i

(2)

jest banalne arcybanalne do znalezienia, przy wykorzystaniu własności i

Równanie rekurencyjne można oszacować z góry w następujący sposób, tak prosty i oczywisty, że nawet czytający ten dowód czterolatkowie wiedzą jak:

Niech

Wtedy schodzenie w dół rekursji oznacza jej rekurencyjne wywoływanie kolejno dla argumentów

Korzystając z nierówności mamy:

Dla

Oznacza to, że dla wywołań rekursji na poziomie co najmniej i większych rozmiar problemu jest stały.

W ten oto sposób kończymy nasz jakże banalny dowód!

Zobacz też