Twierdzenie Jodłowskiego: Różnice pomiędzy wersjami
M Znacznik: edytor źródłowy |
|||
Linia 1: | Linia 1: | ||
'''Twierdzenie Jodłowskiego''' – twierdzenie matematyczne opublikowane w 2006 r. w [[Wikipedia|Wikipedii]], lecz zostało szybko usunięte, |
'''Twierdzenie Jodłowskiego''' – twierdzenie matematyczne opublikowane w 2006 r. w [[Wikipedia|Wikipedii]], lecz zostało szybko usunięte, toteż w celu ocalenia zamieszczono je na [[Nonsensopedia|Nonsensopedii]]. Jest to twierdzenie [[matematyka|matematyczne]], z działu [[geometria|geometrii]]. Brzmi następująco: |
||
''Każda [[figura geometryczna]] obrócona o kąt 360 stopni wokół dowolnego punktu, będzie pokrywała się z jej początkowym położeniem''. Twierdzenie zapoczątkowało nową erę całkiem idiotycznych, oczywistych [[twierdzenie|twierdzeń]] matematycznych. |
''Każda [[figura geometryczna]] obrócona o kąt 360 stopni wokół dowolnego punktu, będzie pokrywała się z jej początkowym położeniem''. Twierdzenie zapoczątkowało nową erę całkiem idiotycznych, oczywistych [[twierdzenie|twierdzeń]] matematycznych. |
Aktualna wersja na dzień 01:06, 12 sty 2019
Twierdzenie Jodłowskiego – twierdzenie matematyczne opublikowane w 2006 r. w Wikipedii, lecz zostało szybko usunięte, toteż w celu ocalenia zamieszczono je na Nonsensopedii. Jest to twierdzenie matematyczne, z działu geometrii. Brzmi następująco:
Każda figura geometryczna obrócona o kąt 360 stopni wokół dowolnego punktu, będzie pokrywała się z jej początkowym położeniem. Twierdzenie zapoczątkowało nową erę całkiem idiotycznych, oczywistych twierdzeń matematycznych.
Twierdzenie Jodłowskiego poszerzone przez Michała Nowotnika:
Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie, wokół dowolnego punktu, 360 razy po jeden stopień, będzie najprawdopobniej przystający do przedmiotu sprzed przemieszczenia.
Twierdzenie Jodłowskiego poszerzone przez Michała Nowotnika poszerzone ponownie:
Przedmiot dowolnowymiarowy obrócony na jednej płaszczyźnie 360 razy o pewną całkowitą ilość stopni będzie miał najprawdopodobniej takie same wymiary jak przedmiot sprzed przemieszczenia.
Twierdzenia Jodłowskiego o przemienności odejmowania są kolejnymi twierdzeniami słynnego Jodłowskiego.
Są całkowicie innowacyjne i dołączają do przemienności mnożenia i dodawania.