Teoria stożka: Różnice pomiędzy wersjami

Z Nonsensopedii, polskiej encyklopedii humoru
M (drobne)
M (po co ten enter???)
 
(Nie pokazano 13 wersji utworzonych przez 7 użytkowników)
Linia 1: Linia 1:
{{medal}}
[[Plik:3kielony2.jpg|thumb|right|200px|Kieliszki o budowie quasi-stożka]]
[[Plik:Four shot glasses.jpg|thumb|200px|Kieliszki o budowie quasi-stożka]]
'''Teoria stożka''' – matematyczny dowód na to, dlaczego tzw. „połówka” (kieliszka) połówką nie jest.
'''Teoria stożka''' – matematyczny dowód na to, dlaczego tzw. „połówka” (kieliszka) połówką nie jest.


==Wstęp i założenia teoretyczne==
== Wstęp i założenia teoretyczne ==
Teoria stożka, zwana również alkoholową teorią stożka, jest pierwszym matematycznym dowodem na to, że tzw. połówka (słowo często używane w zwrocie: ''Nalej mi połówkę'') niekoniecznie połówką być musi. Zjawisko picia „połówek” występuje głównie u [[kobieta|kobiet]], rzadziej u mężczyzn – dzięki teorii stożka pełny po brzegi [[kieliszek]] też jest połówką. Wynika to z budowy owego naczynia które jest często [[paraboloida obrotowa|paraboloidą obrotową]] – czyli w połowie wysokości tejże przestrzennej figury jest mniej niż połowa objętości, jaką można w tej figurze umieścić.
Teoria stożka, zwana również alkoholową teorią stożka, jest pierwszym matematycznym dowodem na to, że tzw. połówka (słowo często używane w zwrocie: ''Nalej mi połówkę'') niekoniecznie połówką być musi. Zjawisko picia „połówek” występuje głównie u [[kobieta|kobiet]], rzadziej u [[mężczyzna|mężczyzn]] – dzięki teorii stożka pełny po brzegi [[kieliszek]] też jest połówką. Wynika to z budowy owego naczynia które jest często [[paraboloida obrotowa|paraboloidą obrotową]] – czyli w połowie wysokości tejże przestrzennej figury jest mniej niż połowa objętości, jaką można w tej figurze umieścić.


==Pomiar szkliwa (kieliszka)==
== Pomiar szkliwa (kieliszka) ==
[[Plik:wykres2d22.jpg|thumb|200px|Rys. 1 – tworząca stożka w układzie 2d]]
[[Plik:wykres2d22.jpg|thumb|200px|Rys. 1 – tworząca stożka w układzie 2d]]
Do zobrazowania dowodu, który został przedstawiony poniżej, został przeprowadzony [[pomiar]] cech parametrycznych (wymiarów) kieliszka (quasi-stożka) o równoległych do siebie płaszczyznach dolnej (dna) i górnej. W teorii posługujemy się ściętym stożkiem, a nie paraboloidą obrotową, aby ułatwić zrozumienie zagadnienia – wyniki dla obu tych figur przestrzennych są niemal jednakowe. (Tworząc matematyczny obraz kieliszka jako stożka unikamy wprowadzania bardziej skomplikowanych [[wzór matematyczny|wzorów]]).
Do zobrazowania dowodu, który został przedstawiony poniżej, został przeprowadzony [[pomiar]] cech parametrycznych (wymiarów) kieliszka (quasi-stożka) o równoległych do siebie płaszczyznach dolnej (dna) i górnej. W teorii posługujemy się ściętym stożkiem, a nie paraboloidą obrotową, aby ułatwić zrozumienie zagadnienia – wyniki dla obu tych figur przestrzennych są niemal jednakowe. (Tworząc matematyczny obraz kieliszka jako stożka unikamy wprowadzania bardziej skomplikowanych [[wzór matematyczny|wzorów]]).


* Wysokość: <math>H=(5,5±0,1) cm</math>
* Wysokość: <math>H=(5.5\pm0.1) cm</math>
* Promień podstawy dolnej: <math>r=(0,8±0,1) cm</math>
* Promień podstawy dolnej: <math>r=(0.8\pm0.1) cm</math>
* Promień podstawy górnej: <math>R=(1,9±0,1) cm</math>
* Promień podstawy górnej: <math>R=(1.9\pm0.1) cm</math>


Do dalszych obliczeń błąd [[miernik|miernika]] (w tym wypadku [[linijka|linijki]]) nie będzie uwzględniany, gdyż zarówno ten błąd jak i odchyłka od wartości średniej pomiaru jest stosunkowo bardzo mała od spodziewanych wyników i nie wpływa na ostateczny wynik.
Do dalszych obliczeń błąd [[miernik]]a (w tym wypadku [[linijka|linijki]]) nie będzie uwzględniany, gdyż zarówno ten błąd jak i odchyłka od wartości średniej pomiaru jest stosunkowo bardzo mała od spodziewanych wyników i nie wpływa na ostateczny wynik.


Zmierzone wartości przenosimy na dwuwymiarowy [[układ współrzędnych]]. Ważne jest, aby rysunek był zrobiony czytelnie i możliwie jak najdokładniej (Rys. 1). Otrzymując równanie tworzącej stożka <math>y=5x-4</math>. Jako, że współczynnik <math>a</math> jest wartością funkcji tangens kąta między osią <math>x</math>, a tworzącą, otrzymujemy kąt nachylenia tworzącej 78 stopni.
Zmierzone wartości przenosimy na dwuwymiarowy [[układ współrzędnych]]. Ważne jest, aby rysunek był zrobiony czytelnie i możliwie jak najdokładniej (Rys. 1). Otrzymując równanie tworzącej stożka <math>y=5x-4</math>. Jako, że współczynnik <math>a</math> jest wartością funkcji tangens kąta między osią <math>x</math>, a tworzącą, otrzymujemy kąt nachylenia tworzącej 78 stopni.


Do dowodu przyjmujemy wysokość 9,5 cm gdzie:
Do dowodu przyjmujemy wysokość 9,5 cm gdzie:
* <math><0cm, 4cm)</math> – nierzeczywiste przedłużenie stożka tzw. nóżka
* <math>\langle 0cm, 4cm )</math> – nierzeczywiste przedłużenie stożka tzw. nóżka
* <math><4cm, 9,5cm></math> – stożek właściwy (mierzalny), tzw. komora wódkowa lub komora szczęścia
* <math>\langle 4cm, 9.5cm \rangle</math> – stożek właściwy (mierzalny), tzw. komora wódkowa lub komora szczęścia


==Dowód założeń teoretycznych==
== Dowód założeń teoretycznych ==
[[Plik:stozek3d2.jpg|thumb|right|200px|Rys. 2 – quasi-stożek; granice całkowania]]
[[Plik:stozek3d2.jpg|thumb|200px|Rys. 2 – quasi-stożek; granice całkowania]]
[[Plik:granice3d2.jpg|thumb|right|200px|Rys. 3 – granice całkowania]]
[[Plik:granice3d2.jpg|thumb|200px|Rys. 3 – granice całkowania]]
[[Plik:granice2a3d2.jpg|thumb|right|200px|Rys. 4 – granice całkowania]]
[[Plik:granice2a3d2.jpg|thumb|200px|Rys. 4 – granice całkowania]]
W dowodzie właściwym udowodnimy – groteskowo stwierdzając – że „połówka” występuje w każdym miejscu. gdzie osoba rozlewająca zachce tę „połówkę” mieć. A ściślej rzecz biorąc, formułujemy tezę: ''Połowa kieliszka mieści się miedzy jego połową wysokości a całą wysokością.''
W dowodzie właściwym udowodnimy – groteskowo stwierdzając – że „połówka” występuje w każdym miejscu. gdzie osoba rozlewająca zachce tę „połówkę” mieć. A ściślej rzecz biorąc, formułujemy tezę: ''Połowa kieliszka mieści się miedzy jego połową wysokości a całą wysokością.''


Linia 33: Linia 34:
<math>0\leq\varphi\leq 2\pi</math>
<math>0\leq\varphi\leq 2\pi</math>


<math>0,8\leq\rho\leq 1,9</math>
<math>0.8\leq\rho\leq 1.9</math>


<math>5\rho\leq\varphi\leq 9,5</math>
<math>5\rho\leq\varphi\leq 9.5</math>


Rozwiązanie całki:
Rozwiązanie całki:
Linia 43: Linia 44:
<math>\int\limits^{2\pi}_0 d\varphi \int\limits^{1.9}_{0.8} [\varphi h]_{5\rho}^{9.5} d\rho = \int\limits^{2\pi}_0 d\varphi \int\limits^{1.9}_{0.8} ({9.5\rho}-{5\rho^2}) d\rho=</math>
<math>\int\limits^{2\pi}_0 d\varphi \int\limits^{1.9}_{0.8} [\varphi h]_{5\rho}^{9.5} d\rho = \int\limits^{2\pi}_0 d\varphi \int\limits^{1.9}_{0.8} ({9.5\rho}-{5\rho^2}) d\rho=</math>


<math>= 2\pi[({{9.5*1.9^2} \over 2}-{{5*1.9^3} \over 3})-({{9.5*0.8^2} \over 2}-{{5*0.8^3} \over 3})]=22.2</math>
<math>= 2\pi\left[ \left({{9.5*1.9^2} \over 2}-{{5*1.9^3} \over 3} \right)-\left({{9.5*0.8^2} \over 2}-{{5*0.8^3} \over 3}\right) \right]=22.2</math>


Zamiana na zmienne walcowe po obszarze <math>A</math>:
Zamiana na zmienne walcowe po obszarze <math>A</math>:
Linia 49: Linia 50:
<math>0\leq\varphi\leq 2\pi</math>
<math>0\leq\varphi\leq 2\pi</math>


<math>0\leq\rho\leq 0,8</math>
<math>0\leq\rho\leq 0.8</math>


<math>4\leq\varphi\leq 9,5</math>
<math>4\leq\varphi\leq 9.5</math>


Rozwiązanie całki:
Rozwiązanie całki:
Linia 57: Linia 58:
<math>V2=\int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0}d\rho \int\limits^{9.5}_{4} \rho dh</math>
<math>V2=\int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0}d\rho \int\limits^{9.5}_{4} \rho dh</math>


<math>\int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0} [\varphi h]_{4}^{9.5} d\rho = \int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0} ({9.5\rho}-{4\rho}) d\rho = 2\pi[{{5.5\rho^2} \over 2}]_0^{0.8}=11.1</math>
<math>\int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0} [\varphi h]_{4}^{9.5} d\rho = \int\limits^{2\pi}_0 d\varphi \int\limits^{0.8}_{0} ({9.5\rho}-{4\rho}) d\rho = 2\pi\left[{{5.5\rho^2} \over 2}\right]_0^{0.8}=11.1</math>


Sumaryczna objętość <math>V</math> mierzonego quasi-stożka (kieliszka) wynosi:
Sumaryczna objętość <math>V</math> mierzonego quasi-stożka (kieliszka) wynosi:
Linia 68: Linia 69:
* <math>Vd<Vg</math>
* <math>Vd<Vg</math>


Pierwszy wniosek: Połówki nie są sobie równe, oraz wniosek drugi – kluczowy – połowa objętości jest zawarta na przedziale względem wysokości od jej połowy do całej wysokości <math>H</math>. Uwzględniając brak przyrządów pomiarowych (mierników) oraz błąd paralaksy ludzkiego oka udowodniliśmy tezę, iż nasza „połówka” jest zawarta na przedziale <<math>1/2H,H</math>> w naszym konkretnym badanym przypadku <math><6.75cm, 9,5cm></math>.
Pierwszy wniosek: Połówki nie są sobie równe, oraz wniosek drugi – kluczowy – połowa objętości jest zawarta na przedziale względem wysokości od jej połowy do całej wysokości <math>H</math>. Uwzględniając brak przyrządów pomiarowych (mierników) oraz błąd paralaksy ludzkiego oka udowodniliśmy tezę, iż nasza „połówka” jest zawarta na przedziale <<math>1/2H,H</math>> w naszym konkretnym badanym przypadku <math>\langle 6.75cm, 9.5cm \rangle</math>.


==Uwagi==
== Uwagi ==
Dysponując aparatem matematycznym, a konkretnie rachunkiem całkowym, udowodniliśmy słuszność i prawdziwość tezy. Przedstawiona teoria dla samej matematyki i nauk pokrewnych nie jest ważna i istotna, lecz ma duże znaczenie społeczne. Bardzo dobrze sprawdza się tam, gdzie w określonej przestrzeni i w określonym czasie znajduje się wiele osób w celu [[libacja|zamierzonej konsumpcji]]. Należy brać pod uwagę, że teoria jest prawdziwa dla kieliszków w kształcie paraboloidy obrotowej lub stożka (kieliszki o tworzącej nachylonej pod kątem 0-30 stopni względem osi symetrii najlepiej nadają się do spożywania płynów). Dla kieliszków typowo cylindrycznych traci sens.
Dysponując aparatem matematycznym, a konkretnie rachunkiem całkowym, udowodniliśmy słuszność i prawdziwość tezy. Przedstawiona teoria dla samej matematyki i nauk pokrewnych nie jest ważna i istotna, lecz ma duże znaczenie społeczne. Bardzo dobrze sprawdza się tam, gdzie w określonej przestrzeni i w określonym czasie znajduje się wiele osób w celu [[libacja alkoholowa|zamierzonej konsumpcji]]. Należy brać pod uwagę, że teoria jest prawdziwa dla kieliszków w kształcie paraboloidy obrotowej lub stożka (kieliszki o tworzącej nachylonej pod kątem 0-30 stopni względem osi symetrii najlepiej nadają się do spożywania płynów). Dla kieliszków typowo cylindrycznych traci sens.

{{Fizyka}}
{{Matematyka}}


[[Kategoria:Fizyka]]
[[Kategoria:Fizyka]]
[[Kategoria:Geometria]]

{{medal}}

Aktualna wersja na dzień 07:44, 11 lip 2023

Medal.svg
Kieliszki o budowie quasi-stożka

Teoria stożka – matematyczny dowód na to, dlaczego tzw. „połówka” (kieliszka) połówką nie jest.

Wstęp i założenia teoretyczne[edytuj • edytuj kod]

Teoria stożka, zwana również alkoholową teorią stożka, jest pierwszym matematycznym dowodem na to, że tzw. połówka (słowo często używane w zwrocie: Nalej mi połówkę) niekoniecznie połówką być musi. Zjawisko picia „połówek” występuje głównie u kobiet, rzadziej u mężczyzn – dzięki teorii stożka pełny po brzegi kieliszek też jest połówką. Wynika to z budowy owego naczynia które jest często paraboloidą obrotową – czyli w połowie wysokości tejże przestrzennej figury jest mniej niż połowa objętości, jaką można w tej figurze umieścić.

Pomiar szkliwa (kieliszka)[edytuj • edytuj kod]

Rys. 1 – tworząca stożka w układzie 2d

Do zobrazowania dowodu, który został przedstawiony poniżej, został przeprowadzony pomiar cech parametrycznych (wymiarów) kieliszka (quasi-stożka) o równoległych do siebie płaszczyznach dolnej (dna) i górnej. W teorii posługujemy się ściętym stożkiem, a nie paraboloidą obrotową, aby ułatwić zrozumienie zagadnienia – wyniki dla obu tych figur przestrzennych są niemal jednakowe. (Tworząc matematyczny obraz kieliszka jako stożka unikamy wprowadzania bardziej skomplikowanych wzorów).

  • Wysokość:
  • Promień podstawy dolnej:
  • Promień podstawy górnej:

Do dalszych obliczeń błąd miernika (w tym wypadku linijki) nie będzie uwzględniany, gdyż zarówno ten błąd jak i odchyłka od wartości średniej pomiaru jest stosunkowo bardzo mała od spodziewanych wyników i nie wpływa na ostateczny wynik.

Zmierzone wartości przenosimy na dwuwymiarowy układ współrzędnych. Ważne jest, aby rysunek był zrobiony czytelnie i możliwie jak najdokładniej (Rys. 1). Otrzymując równanie tworzącej stożka . Jako, że współczynnik jest wartością funkcji tangens kąta między osią , a tworzącą, otrzymujemy kąt nachylenia tworzącej 78 stopni.

Do dowodu przyjmujemy wysokość 9,5 cm gdzie:

  • – nierzeczywiste przedłużenie stożka tzw. nóżka
  • – stożek właściwy (mierzalny), tzw. komora wódkowa lub komora szczęścia

Dowód założeń teoretycznych[edytuj • edytuj kod]

Rys. 2 – quasi-stożek; granice całkowania
Rys. 3 – granice całkowania
Rys. 4 – granice całkowania

W dowodzie właściwym udowodnimy – groteskowo stwierdzając – że „połówka” występuje w każdym miejscu. gdzie osoba rozlewająca zachce tę „połówkę” mieć. A ściślej rzecz biorąc, formułujemy tezę: Połowa kieliszka mieści się miedzy jego połową wysokości a całą wysokością.

Obliczamy objętość kieliszka (uwzględniając pomiary wyżej zebrane). Objętość równa się całce potrójnej z jedności po obszarze . Obszar dzielimy na dwa: oraz . Obszar składa się z obszarów (Rys. 3) a z . Układ kartezjański zamieniamy na cylindryczny.

Zamiana na zmienne walcowe po obszarze :

Rozwiązanie całki:

Zamiana na zmienne walcowe po obszarze :

Rozwiązanie całki:

Sumaryczna objętość mierzonego quasi-stożka (kieliszka) wynosi:

Połowa wysokości kieliszka znajduje się na wysokości . W sposób analogiczny do przedstawionego powyżej obliczamy objętość połówki dolnej (po obszarach ) oraz połówki górnej () otrzymując:

  • Objętość połówki dolnej:
  • Objętość połówki górnej:

Pierwszy wniosek: Połówki nie są sobie równe, oraz wniosek drugi – kluczowy – połowa objętości jest zawarta na przedziale względem wysokości od jej połowy do całej wysokości . Uwzględniając brak przyrządów pomiarowych (mierników) oraz błąd paralaksy ludzkiego oka udowodniliśmy tezę, iż nasza „połówka” jest zawarta na przedziale <> w naszym konkretnym badanym przypadku .

Uwagi[edytuj • edytuj kod]

Dysponując aparatem matematycznym, a konkretnie rachunkiem całkowym, udowodniliśmy słuszność i prawdziwość tezy. Przedstawiona teoria dla samej matematyki i nauk pokrewnych nie jest ważna i istotna, lecz ma duże znaczenie społeczne. Bardzo dobrze sprawdza się tam, gdzie w określonej przestrzeni i w określonym czasie znajduje się wiele osób w celu zamierzonej konsumpcji. Należy brać pod uwagę, że teoria jest prawdziwa dla kieliszków w kształcie paraboloidy obrotowej lub stożka (kieliszki o tworzącej nachylonej pod kątem 0-30 stopni względem osi symetrii najlepiej nadają się do spożywania płynów). Dla kieliszków typowo cylindrycznych traci sens.